

CASE STUDY

Danish biogas plant preparing for dynamic FeCl₂ dosing

The operator of a Danish biogas plant is preparing to start dynamic $FeCl_2$ dosing to cost-optimise the plant's 3-stage desulphurisation process. Measuring in the wet and unprocessed biogas right after an anaerobic digester, a SulfiLogger^M H₂S sensor provides continuous H₂S data, enabling the operator to adjust the injection rate of FeCl₂ to match actual H₂S levels in the next stage of the project.

Background

A Danish biogas plant operator with an annual production of more than 5 million m³ of biomethane wants to optimise his running costs for desulphurisation.

The plant's primary feedstock is chicken manure, hay and crops from nearby operations, and the sludge is used as fertilizer for the fields.

Although only a couple of years old, the plant is already highly successful and therefore in the process of being upgraded to increase the production capacity even further.

Desulphurisation setup

The biogas is purified via a 3-stage desulphurisation process. In the first stage, the operator doses FeCl₂ directly into each of the plant's five anaerobic digesters. Following this, the gas enters activated carbon filters for further gas desulphurisation before a membrane system upgrades the gas to biomethane for the natural gas grid. The operator currently monitors the H₂S levels in the process gas using a traditional multi gas analyzer installed just before the activated carbon filters. The multi gas analyzer provides spot measurements of conditioned gas at fixed intervals.

Purpose

With this project, the operator wants to dynamically adjust the $FeCI_2$ injection rate to optimise his cost of chemicals while maintaining the optimal lifespan on costly activated carbon filters and protecting the delicate membrane system from corrosion induced by H_2S spikes.

Figure 1: Overview of the 3-stage desulphurisation process at the biogas plant and the sensor's location in the setup.

Solution

An inline SulfiLogger™ H₂S sensor was installed in a side-stream right after one of the five digesters measuring directly in the wet and unconditioned biogas. The ATEX certified sensor provided continuous, online H₂S data via a cloud solution with data points updated every minute.

Results

The SulfiLogger H_2S sensor provided the plant operator with a complete overview of the real-time presence of H_2S after the digester. Disregarding the fluctuations, the H_2S levels in the gas coming out of the digester were generally quite low, suggesting the operator is dosing excessive quantities of FeCl₂ for long periods of time.

Perspectives

Sample-based H₂S analyzers do not provide an ideal input for dynamic chemical dosing in biogas, as they deliver a static snapshot rather than a full overview over time. By relying solely on sample-based measurements for adjusting chemical injection rates, biogas operators risk dosing either excessive quantities to match peak loads of H₂S or insufficient amounts minimising the lifespan of assets.

Using the novel SulfiLogger ${}^{\mathbb{M}}$ H₂S sensor, biogas operators can optimise H₂S mitigative actions for lower running costs and improved asset management.

Figure 2: H_2S readings from the SulfiLoggerTM H_2S sensor measuring right after an anaerobic digester. The top graph shows the full 5 day data set, while the bottom graph highlights a period of $2\frac{1}{2}$ hours at the end of the second day (marked in red).

Both graphs show frequent process-induced fluctuations in the H_2S levels in the gas coming out of the digester. The half-hourly fluctuations shown in the bottom graph are caused by the mixer turning on and off.

About the SulfiLogger[™] H₂S sensor

The SulfiLogger^M H₂S sensor is an inline H₂S sensor for continuous, online monitoring of unprocessed biogas. It is well suited for installation in various placements in biogas plants, as the sensor measures in high humidity – it can even measure in water, and as it requires no addition of oxygen or any other pre-treatment of the gas.

SulfiLogger

SulfiLogger A/S Tueager 1 DK-8200 Aarhus N Tel: +45 8944 9550

sales@sulfilogger.com sulfilogger.com

- in SulfiLogger
- SulfiLogger
- SulfiLogger